Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 301, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515015

RESUMO

BACKGROUND: Iron deficiency (ID) during the fetal-neonatal period results in long-term neurodevelopmental impairments associated with pervasive hippocampal gene dysregulation. Prenatal choline supplementation partially normalizes these effects, suggesting an interaction between iron and choline in hippocampal transcriptome regulation. To understand the regulatory mechanisms, we investigated epigenetic marks of genes with altered chromatin accessibility (ATAC-seq) or poised to be repressed (H3K9me3 ChIP-seq) in iron-repleted adult rats having experienced fetal-neonatal ID exposure with or without prenatal choline supplementation. RESULTS: Fetal-neonatal ID was induced by limiting maternal iron intake from gestational day (G) 2 through postnatal day (P) 7. Half of the pregnant dams were given supplemental choline (5.0 g/kg) from G11-18. This resulted in 4 groups at P65 (Iron-sufficient [IS], Formerly Iron-deficient [FID], IS with choline [ISch], and FID with choline [FIDch]). Hippocampi were collected from P65 iron-repleted male offspring and analyzed for chromatin accessibility and H3K9me3 enrichment. 22% and 24% of differentially transcribed genes in FID- and FIDch-groups, respectively, exhibited significant differences in chromatin accessibility, whereas 1.7% and 13% exhibited significant differences in H3K9me3 enrichment. These changes mapped onto gene networks regulating synaptic plasticity, neuroinflammation, and reward circuits. Motif analysis of differentially modified genomic sites revealed significantly stronger choline effects than early-life ID and identified multiple epigenetically modified transcription factor binding sites. CONCLUSIONS: This study reveals genome-wide, stable epigenetic changes and epigenetically modifiable gene networks associated with specific chromatin marks in the hippocampus, and lays a foundation to further elucidate iron-dependent epigenetic mechanisms that underlie the long-term effects of fetal-neonatal ID, choline, and their interactions.


Assuntos
Deficiências de Ferro , Ferro , Gravidez , Feminino , Animais , Ratos , Masculino , Ferro/metabolismo , Cromatina/genética , Cromatina/metabolismo , Animais Recém-Nascidos , Ratos Sprague-Dawley , Epigênese Genética , Colina/farmacologia , Colina/metabolismo , Hipocampo
2.
J Nutr ; 154(4): 1141-1152, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408730

RESUMO

BACKGROUND: Developmental iron deficiency (ID) is associated with long-term cognitive and affective behavioral impairments in humans. Preclinical studies have shown that developmental ID has short- and long-term effects on gene regulation. Prenatal choline supplementation partially rescues early-life ID-induced cognitive deficits in adult male rats. OBJECTIVES: To identify acute and long-term changes in biological processes regulated by developmental ID and modifiable by choline. METHODS: This study compares the hippocampal transcriptomes of postnatal day (P) 15 iron-deficient (acute) and P65 formerly ID (persistent) rats with or without prenatal choline treatment. Pregnant rats were fed an ID (4 mg/kg Fe) or iron-sufficient (IS) (200 mg/kg Fe) diet from gestational day (G) 2 to P7 with or without choline supplementation (5 g/kg choline) from G11 to G18. Hippocampi were collected from P15 or P65 offspring and analyzed for gene expression by RNA sequencing. RESULTS: Developmental ID-induced changes suggested modified activity of oxidative phosphorylation and fatty acid metabolism. Prenatal choline supplementation induced robust changes in gene expression, particularly in iron-deficient animals, where it partially mitigated the early-life ID-dysregulated genes. Choline supplementation also altered the hippocampal transcriptome in the IS rats, with indications for both beneficial and adverse effects. CONCLUSIONS: This study provided global assessments of gene expression regulated by iron and choline. Our new findings highlight genes responding to iron or choline treatments, including a potentially novel choline-regulated transporter (IPO7), with shared effects on neuroinflammation in the male rat hippocampus.


Assuntos
Deficiências de Ferro , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Humanos , Feminino , Ratos , Animais , Masculino , Ferro/metabolismo , Transcriptoma , Colina , Animais Recém-Nascidos , Ratos Sprague-Dawley , Vitaminas/farmacologia , Hipocampo/metabolismo
3.
Nutrients ; 15(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36986048

RESUMO

BACKGROUND: Fetal-neonatal iron deficiency (ID) causes long-term neurocognitive and affective dysfunctions. Clinical and preclinical studies have shown that early-life ID produces sex-specific effects. However, little is known about the molecular mechanisms underlying these early-life ID-induced sex-specific effects on neural gene regulation. OBJECTIVE: To illustrate sex-specific transcriptome alterations in adult rat hippocampus induced by fetal-neonatal ID and prenatal choline treatment. METHODS: Pregnant rats were fed an iron-deficient (4 mg/kg Fe) or iron-sufficient (200 mg/kg Fe) diet from gestational day (G) 2 to postnatal day (P) 7 with or without choline supplementation (5 g/kg choline) from G11-18. Hippocampi were collected from P65 offspring of both sexes and analyzed for changes in gene expression. RESULTS: Both early-life ID and choline treatment induced transcriptional changes in adult female and male rat hippocampi. Both sexes showed ID-induced alterations in gene networks leading to enhanced neuroinflammation. In females, ID-induced changes indicated enhanced activity of oxidative phosphorylation and fatty acid metabolism, which were contrary to the ID effects in males. Prenatal choline supplementation induced the most robust changes in gene expression, particularly in iron-deficient animals where it partially rescued ID-induced dysregulation. Choline supplementation also altered hippocampal transcriptome in iron-sufficient rats with indications for both beneficial and adverse effects. CONCLUSIONS: This study provided unbiased global assessments of gene expression regulated by iron and choline in a sex-specific manner, with greater effects in female than male rats. Our new findings highlight potential sex-specific gene networks regulated by iron and choline for further investigation.


Assuntos
Deficiências de Ferro , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Humanos , Animais , Ratos , Masculino , Feminino , Colina/farmacologia , Colina/metabolismo , Transcriptoma , Animais Recém-Nascidos , Ratos Sprague-Dawley , Ferro/metabolismo , Vitaminas/farmacologia , Hipocampo/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo
4.
Dev Neurosci ; 44(2): 80-90, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35016180

RESUMO

Iron deficiency (ID) during neurodevelopment is associated with lasting cognitive and socioemotional deficits and increased risk for neuropsychiatric disease throughout the lifespan. These neurophenotypical changes are underlain by gene dysregulation in the brain that outlasts the period of ID; however, the mechanisms by which ID establishes and maintains gene expression changes are incompletely understood. The epigenetic modification of 5-hydroxymethylcytosine (5hmC), or DNA hydroxymethylation, is one candidate mechanism because of its dependence on iron-containing TET enzymes. The aim of the present study was to determine the effect of fetal-neonatal ID on regional brain TET activity, Tet expression, and 5hmC in the developing rat hippocampus and cerebellum and to determine whether changes are reversible with dietary iron treatment. Timed pregnant Sprague Dawley rats were fed iron-deficient diet (ID; 4 mg/kg Fe) from gestational day 2 to generate iron-deficient anemic (IDA) offspring. Control dams were fed iron-sufficient diet (IS; 200 mg/kg Fe). At postnatal day (P)7, a subset of ID-fed litters was randomized to IS diet, generating treated IDA (TIDA) offspring. At P15, the hippocampus and cerebellum were isolated for subsequent analysis. TET activity was quantified by ELISA from nuclear proteins. Expression of Tet1, Tet2, and Tet3 was quantified by qPCR from total RNA. Global %5hmC was quantified by ELISA from genomic DNA. ID increased DNA hydroxymethylation (p = 0.0105), with a corresponding increase in TET activity (p < 0.0001) and Tet3 expression (p < 0.0001) in the P15 hippocampus. In contrast, ID reduced TET activity (p = 0.0016) in the P15 cerebellum, with minimal effect on DNA hydroxymethylation. Neonatal dietary iron treatment resulted in partial normalization of these changes in both brain regions. These results demonstrate that the TET/DNA hydroxymethylation system is disrupted by developmental ID in a brain region-specific manner. Differential regional disruption of this epigenetic system may contribute to the lasting neural circuit dysfunction and neurobehavioral dysfunction associated with developmental ID.


Assuntos
Deficiências de Ferro , Animais , Cerebelo , DNA/metabolismo , DNA/farmacologia , Feminino , Hipocampo/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley
5.
Nutrients ; 13(12)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34960080

RESUMO

Early-life iron deficiency (ID) causes long-term neurocognitive impairments and gene dysregulation that can be partially mitigated by prenatal choline supplementation. The long-term gene dysregulation is hypothesized to underlie cognitive dysfunction. However, mechanisms by which iron and choline mediate long-term gene dysregulation remain unknown. In the present study, using a well-established rat model of fetal-neonatal ID, we demonstrated that ID downregulated hippocampal expression of the gene encoding JmjC-ARID domain-containing protein 1B (JARID1B), an iron-dependent histone H3K4 demethylase, associated with a higher histone deacetylase 1 (HDAC1) enrichment and a lower enrichment of acetylated histone H3K9 (H3K9ac) and phosphorylated cAMP response element-binding protein (pCREB). Likewise, ID reduced transcriptional capacity of the gene encoding brain-derived neurotrophic factor (BDNF), a target of JARID1B, associated with repressive histone modifications such as lower H3K9ac and pCREB enrichments at the Bdnf promoters in the adult rat hippocampus. Prenatal choline supplementation did not prevent the ID-induced chromatin modifications at these loci but induced long-lasting repressive chromatin modifications in the iron-sufficient adult rats. Collectively, these findings demonstrated that the iron-dependent epigenetic mechanism mediated by JARID1B accounted for long-term Bdnf dysregulation by early-life ID. Choline supplementation utilized a separate mechanism to rescue the effect of ID on neural gene regulation. The negative epigenetic effects of choline supplementation in the iron-sufficient rat hippocampus necessitate additional investigations prior to its use as an adjunctive therapeutic agent.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Colina/farmacologia , Proteínas de Ligação a DNA/metabolismo , Hipocampo/efeitos dos fármacos , Deficiências de Ferro , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Colina/administração & dosagem , Proteínas de Ligação a DNA/genética , Suplementos Nutricionais , Epigênese Genética , Feminino , Hipocampo/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos
6.
Nutrients ; 13(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34836113

RESUMO

Iron deficiency (ID) anemia is the foremost micronutrient deficiency worldwide, affecting around 40% of pregnant women and young children. ID during the prenatal and early postnatal periods has a pronounced effect on neurodevelopment, resulting in long-term effects such as cognitive impairment and increased risk for neuropsychiatric disorders. Treatment of ID has been complicated as it does not always resolve the long-lasting neurodevelopmental deficits. In animal models, developmental ID results in abnormal hippocampal structure and function associated with dysregulation of genes involved in neurotransmission and synaptic plasticity. Dysregulation of these genes is a likely proximate cause of the life-long deficits that follow developmental ID. However, a direct functional link between iron and gene dysregulation has yet to be elucidated. Iron-dependent epigenetic modifications are one mechanism by which ID could alter gene expression across the lifespan. The jumonji and AT-rich interaction domain-containing (JARID) protein and the Ten-Eleven Translocation (TET) proteins are two families of iron-dependent epigenetic modifiers that play critical roles during neural development by establishing proper gene regulation during critical periods of brain development. Therefore, JARIDs and TETs can contribute to the iron-mediated epigenetic mechanisms by which early-life ID directly causes stable changes in gene regulation across the life span.


Assuntos
Anemia Ferropriva/genética , Epigênese Genética/fisiologia , Hipocampo/metabolismo , Fenômenos Fisiológicos da Nutrição do Lactente/genética , Fenômenos Fisiológicos da Nutrição Materna/genética , Anemia Ferropriva/complicações , Animais , Animais Recém-Nascidos , Desenvolvimento Infantil/fisiologia , Epigenômica , Feminino , Hipocampo/crescimento & desenvolvimento , Humanos , Lactente , Recém-Nascido , Transtornos do Neurodesenvolvimento/genética , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Transmissão Sináptica/fisiologia
7.
Neuroscience ; 457: 74-87, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33422618

RESUMO

Pain is a major health problem, affecting over fifty million adults in the US alone, with significant economic cost in medical care and lost productivity. Despite evidence implicating nicotinic acetylcholine receptors (nAChRs) in pathological pain, their specific contribution to pain processing in the spinal cord remains unclear given their presence in both neuronal and non-neuronal cell types. Here we investigated if loss of neuronal-specific TMEM35a (NACHO), a novel chaperone for functional expression of the homomeric α7 and assembly of the heteromeric α3, α4, and α6-containing nAChRs, modulates pain in mice. Mice with tmem35a deletion exhibited thermal hyperalgesia and mechanical allodynia. Intrathecal administration of nicotine and the α7-specific agonist, PHA543613, produced analgesic responses to noxious heat and mechanical stimuli in tmem35a KO mice, respectively, suggesting residual expression of these receptors or off-target effects. Since NACHO is expressed only in neurons, these findings indicate that neuronal α7 nAChR in the spinal cord contributes to heat nociception. To further determine the molecular basis underlying the pain phenotype, we analyzed the spinal cord transcriptome. Compared to WT control, the spinal cord of tmem35a KO mice exhibited 72 differentially-expressed genes (DEGs). These DEGs were mapped onto functional gene networks using the knowledge-based database, Ingenuity Pathway Analysis, and suggests increased neuroinflammation as a potential contributing factor for the hyperalgesia in tmem35a KO mice. Collectively, these findings implicate a heightened inflammatory response in the absence of neuronal NACHO activity. Additional studies are needed to determine the precise mechanism by which NACHO in the spinal cord modulates pain.


Assuntos
Hiperalgesia , Receptores Nicotínicos , Animais , Canais Iônicos , Camundongos , Chaperonas Moleculares/metabolismo , Neurônios/metabolismo , Nicotina , Receptores Nicotínicos/genética
8.
Mol Pain ; 16: 1744806920956480, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32909881

RESUMO

To develop non-opioid therapies for postoperative incisional pain, we must understand its underlying molecular mechanisms. In this study, we assessed global gene expression changes in dorsal root ganglia neurons in a model of incisional pain to identify pertinent molecular pathways. Male, Sprague-Dawley rats underwent infiltration of 1% capsaicin or vehicle into the plantar hind paw (n = 6-9/group) 30 min before plantar incision. Twenty-four hours after incision or sham (control) surgery, lumbar L4-L6 dorsal root ganglias were collected from rats pretreated with vehicle or capsaicin. RNA was isolated and sequenced by next generation sequencing. The genes were then annotated to functional networks using a knowledge-based database, Ingenuity Pathway Analysis. In rats pretreated with vehicle, plantar incision caused robust hyperalgesia, up-regulated 36 genes and downregulated 90 genes in dorsal root ganglias one day after plantar incision. Capsaicin pretreatment attenuated pain behaviors, caused localized denervation of the dermis and epidermis, and prevented the incision-induced changes in 99 of 126 genes. The pathway analyses showed altered gene networks related to increased pro-inflammatory and decreased anti-inflammatory responses in dorsal root ganglias. Insulin-like growth factor signaling was identified as one of the major gene networks involved in the development of incisional pain. Expression of insulin-like growth factor -2 and IGFBP6 in dorsal root ganglia were independently validated with quantitative real-time polymerase chain reaction. We discovered a distinct subset of dorsal root ganglia genes and three key signaling pathways that are altered 24 h after plantar incision but are unchanged when incision was made after capsaicin infiltration in the skin. Further exploration of molecular mechanisms of incisional pain may yield novel therapeutic targets.


Assuntos
Capsaicina/farmacologia , Gânglios Espinais/metabolismo , Dor Pós-Operatória/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Somatomedinas/metabolismo , Transcriptoma/genética , Animais , Escala de Avaliação Comportamental , Capsaicina/uso terapêutico , Biologia Computacional , Regulação para Baixo , Gânglios Espinais/lesões , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Masculino , RNA-Seq , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/genética , Somatomedinas/genética , Ferida Cirúrgica/complicações , Regulação para Cima
9.
Neurosci Insights ; 15: 2633105520935104, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32637938

RESUMO

Iron deficiency (ID) is one of the most prevalent nutritional deficiencies in the world. Iron deficiency in the late fetal and newborn period causes abnormal cognitive performance and emotional regulation, which can persist into adulthood despite iron repletion. Potential mechanisms contributing to these impairments include deficits in brain energy metabolism, neurotransmission, and myelination. Here, we comprehensively review the existing data that demonstrate diminished brain energetic capacity as a mechanistic driver of impaired neurobehavioral development due to early-life (fetal-neonatal) ID. We further discuss a novel hypothesis that permanent metabolic reprogramming, which occurs during the period of ID, leads to chronically impaired neuronal energetics and mitochondrial capacity in adulthood, thus limiting adult neuroplasticity and neurobehavioral function. We conclude that early-life ID impairs energy metabolism in a brain region- and age-dependent manner, with particularly strong evidence for hippocampal neurons. Additional studies, focusing on other brain regions and cell types, are needed.

10.
Nutrients ; 11(10)2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31623079

RESUMO

Maternal iron deficiency anemia, obesity, and diabetes are prevalent during pregnancy. All are associated with neonatal brain iron deficiency (ID) and neurodevelopmental impairment. Exosomes are extracellular vesicles involved in cell-cell communication. Contactin-2 (CNTN2), a neural-specific glycoprotein, and brain-derived neurotrophic factor (BDNF) are important in neurodevelopment and found in exosomes. We hypothesized that exosomal CNTN2 and BDNF identify infants at risk for brain ID. Umbilical cord blood samples were measured for iron status. Maternal anemia, diabetes, and body mass index (BMI) were recorded. Cord blood exosomes were isolated and validated for the exosomal marker CD81 and the neural-specific exosomal marker CNTN2. Exosomal CNTN2 and BDNF levels were quantified by ELISA. Analysis of CNTN2 and BDNF levels as predictors of cord blood iron indices showed a direct correlation between CNTN2 and ferritin in all neonates (n = 79, ß = 1.75, p = 0.02). In contrast, BDNF levels inversely correlated with ferritin (ß = -1.20, p = 0.03), with stronger association in female neonates (n = 37, ß = -1.35, p = 0.06), although there is no evidence of a sex-specific effect. Analysis of maternal risk factors for neonatal brain ID as predictors of exosomal CNTN2 and BDNF levels showed sex-specific relationships between infants of diabetic mothers (IDMs) and CNTN2 levels (Interaction p = 0.0005). While male IDMs exhibited a negative correlation (n = 42, ß = -0.69, p = 0.02), female IDMs showed a positive correlation (n = 37, ß = 0.92, p = 0.01) with CNTN2. A negative correlation between BNDF and maternal BMI was found with stronger association in female neonates (per 10 units BMI, ß = -0.60, p = 0.04). These findings suggest CNTN2 and BNDF are respective molecular markers for male and female neonates at risk for brain ID. This study supports the potential of exosomal markers to assess neonatal brain status in at-risk infants.


Assuntos
Anemia Ferropriva/diagnóstico , Fator Neurotrófico Derivado do Encéfalo/sangue , Encéfalo/metabolismo , Contactina 2/sangue , Exossomos/metabolismo , Sangue Fetal/metabolismo , Adolescente , Adulto , Anemia Ferropriva/sangue , Anemia Ferropriva/etiologia , Anemia Ferropriva/fisiopatologia , Biomarcadores/sangue , Encéfalo/crescimento & desenvolvimento , Feminino , Ferritinas/sangue , Humanos , Recém-Nascido , Masculino , Gravidez , Fatores de Risco , Fatores Sexuais , Adulto Jovem
11.
Nutrients ; 11(5)2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31137889

RESUMO

Early-life iron deficiency results in long-term abnormalities in cognitive function and affective behavior in adulthood. In preclinical models, these effects have been associated with long-term dysregulation of key neuronal genes. While limited evidence suggests histone methylation as an epigenetic mechanism underlying gene dysregulation, the role of DNA methylation remains unknown. To determine whether DNA methylation is a potential mechanism by which early-life iron deficiency induces gene dysregulation, we performed whole genome bisulfite sequencing to identify loci with altered DNA methylation in the postnatal day (P) 15 iron-deficient (ID) rat hippocampus, a time point at which the highest level of hippocampal iron deficiency is concurrent with peak iron demand for axonal and dendritic growth. We identified 229 differentially methylated loci and they were mapped within 108 genes. Among them, 63 and 45 genes showed significantly increased and decreased DNA methylation in the P15 ID hippocampus, respectively. To establish a correlation between differentially methylated loci and gene dysregulation, the methylome data were compared to our published P15 hippocampal transcriptome. Both datasets showed alteration of similar functional networks regulating nervous system development and cell-to-cell signaling that are critical for learning and behavior. Collectively, the present findings support a role for DNA methylation in neural gene dysregulation following early-life iron deficiency.


Assuntos
Anemia Ferropriva/genética , Metilação de DNA , Hipocampo/metabolismo , Deficiências de Ferro , Neurogênese/genética , Neurônios/metabolismo , Anemia Ferropriva/sangue , Anemia Ferropriva/patologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Hipocampo/patologia , Ferro/sangue , Masculino , Neurônios/patologia , Gravidez , Ratos Sprague-Dawley
12.
Pediatr Res ; 85(2): 176-182, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30341413

RESUMO

Adequate nutrition during the pre- and early-postnatal periods plays a critical role in programming early neurodevelopment. Disruption of neurodevelopment by nutritional deficiencies can result not only in lasting functional deficits, but increased risk of neuropsychiatric disease in adulthood. Historical periods of famine such as the Dutch Hunger Winter and the Chinese Famine have provided foundational evidence for the long-term effects of developmental malnutrition on neuropsychiatric outcomes. Because neurodevelopment is a complex process that consists of many nutrient- and brain-region-specific critical periods, subsequent clinical and pre-clinical studies have aimed to elucidate the specific roles of individual macro- and micronutrient deficiencies in neurodevelopment and neuropsychiatric pathologies. This review will discuss developmental iron deficiency (ID), the most common micronutrient deficiency worldwide, as a paradigm for understanding the role of early-life nutrition in neurodevelopment and risk of neuropsychiatric disease. We will review the epidemiologic data linking ID to neuropsychiatric dysfunction, as well as the underlying structural, cellular, and molecular mechanisms that are thought to underlie these lasting effects. Understanding the mechanisms driving lasting dysfunction and disease risk is critical for development and implementation of nutritional policies aimed at preventing nutritional deficiencies and their long-term sequelae.


Assuntos
Ferro/metabolismo , Transtornos Mentais/etiologia , Transtornos do Neurodesenvolvimento/etiologia , Encéfalo/crescimento & desenvolvimento , Humanos , Estado Nutricional
13.
J Nutr ; 148(10): 1521-1528, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30169712

RESUMO

Background: Iron deficiency (ID) compromises the developing nervous system, including the hippocampus, resulting in later-life deficits despite iron repletion. The iron-dependent molecular changes driving these lasting deficits, and the effect of early iron repletion, are incompletely understood. Previous studies have utilized dietary models of maternal-fetal ID anemia (IDA) to address these questions; however, concurrent anemia prevents delineation of the specific role of iron. Objective: The aim of the study was to isolate the effects of developmental ID on adult hippocampal gene expression and to determine if iron repletion reverses these effects in a mouse model of nonanemic hippocampal neuronal ID. Methods: Nonanemic, hippocampus-specific neuronal ID was generated by using a Tet-OFF dominant negative transferrin receptor (DN-TFR1) mouse model that impairs cellular iron uptake. Hippocampal ID was reversed with doxycycline at postnatal day 21 (P21) in a subset of mice to create 2 experimental groups, chronically iron-deficient and formerly iron-deficient mice, which were compared with their respective doxycycline-treated and untreated iron-sufficient controls. RNA from adult male hippocampi was sequenced. Paired-end reads were analyzed for differential expression. Differentially expressed genes were analyzed in Ingenuity Pathway Analysis. Results: A total of 346 genes were differentially expressed in adult, chronically iron-deficient hippocampi compared with controls. ID dysregulated genes in critical neurodevelopmental pathways, including axonal guidance, CDK5, Ephrin receptor, Rac, and Neurotrophin/Trk signaling. Iron repletion at P21 normalized adult hippocampal expression of 198 genes; however, genes involved in cAMP response element-binding protein (CREB) signaling, neurocognition, and neurologic disease remained dysregulated in adulthood. Conclusions: Chronic ID during development, independent of anemia, alters the adult mouse hippocampal transcriptome. Restoring iron status during a known critical period of hippocampal neurodevelopment incompletely normalized these changes, suggesting a need for additional studies to identify the most effective timeline for iron therapy, and adjunctive treatments that can fully restore ID-induced molecular changes, particularly in human populations in whom chronic ID is endemic.


Assuntos
Anemia Ferropriva/complicações , Animais Recém-Nascidos/metabolismo , Hipocampo/metabolismo , Deficiências de Ferro , Sistema Nervoso/crescimento & desenvolvimento , Transcriptoma , Anemia Ferropriva/tratamento farmacológico , Animais , Modelos Animais de Doenças , Hipocampo/citologia , Ferro/metabolismo , Ferro/uso terapêutico , Masculino , Camundongos , Camundongos Transgênicos , Sistema Nervoso/metabolismo , Neurogênese , Neurônios/metabolismo , Estado Nutricional , RNA/análise , Receptores da Transferrina/metabolismo
14.
BMC Bioinformatics ; 19(1): 31, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402210

RESUMO

BACKGROUND: Identification of differentially methylated regions (DMRs) is the initial step towards the study of DNA methylation-mediated gene regulation. Previous approaches to call DMRs suffer from false prediction, use extreme resources, and/or require library installation and input conversion. RESULTS: We developed a new approach called Defiant to identify DMRs. Employing Weighted Welch Expansion (WWE), Defiant showed superior performance to other predictors in the series of benchmarking tests on artificial and real data. Defiant was subsequently used to investigate DNA methylation changes in iron-deficient rat hippocampus. Defiant identified DMRs close to genes associated with neuronal development and plasticity, which were not identified by its competitor. Importantly, Defiant runs between 5 to 479 times faster than currently available software packages. Also, Defiant accepts 10 different input formats widely used for DNA methylation data. CONCLUSIONS: Defiant effectively identifies DMRs for whole-genome bisulfite sequencing (WGBS), reduced-representation bisulfite sequencing (RRBS), Tet-assisted bisulfite sequencing (TAB-seq), and HpaII tiny fragment enrichment by ligation-mediated PCR-tag (HELP) assays.


Assuntos
Metilação de DNA/genética , Hipocampo/metabolismo , Deficiências de Ferro , Anotação de Sequência Molecular , Software , Algoritmos , Animais , Animais Recém-Nascidos , Ilhas de CpG/genética , Bases de Dados Genéticas , Feminino , Feto/metabolismo , Ratos Sprague-Dawley , Fatores de Tempo
15.
Behav Brain Res ; 336: 40-43, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811181

RESUMO

Early-life iron deficiency is a common nutrient condition worldwide and can result in cognitive impairment in adulthood despite iron treatment. In rodents, prenatal choline supplementation can diminish long-term hippocampal gene dysregulation and neurocognitive deficits caused by iron deficiency. Since fetal iron status is generally unknown in humans, we determined whether postnatal choline supplementation exerts similar beneficial effects. Male rat pups were made iron deficient (ID) by providing pregnant and nursing dams an ID diet (3-6ppm Fe) from gestational day (G) 3 through postnatal day (P) 7, and an iron-sufficient (IS) diet (200ppm Fe) thereafter. Control pups were provided IS diet throughout. Choline (5ppm) was given to half the nursing dams and weanlings in each group from P11-P30. P65 rat cognitive performance was assessed by novel object recognition (NOR). Real-time PCR was performed to validate expression levels of synaptic plasticity genes known to be dysregulated by early-life iron deficiency. Postnatal choline supplementation prevented impairment of NOR memory in formerly iron-deficient (FID) adult rats but impaired NOR memory in IS controls. Gene expression analysis revealed a recovery of 4 out of 10 dysregulated genes compared to 8 of the same 10 genes that we previously demonstrated to recover following prenatal choline supplementation. Recognition memory deficits induced by early-life iron deficiency can be prevented by postnatal choline supplementation and disrupted expression of a subset of synaptic plasticity genes can be ameliorated. The positive response to postnatal choline represents a potential adjunctive therapeutic supplement to treat iron-deficient anemic children in order to spare long-term neurodevelopmental deficits.


Assuntos
Anemia Ferropriva/metabolismo , Colina/farmacologia , Transtornos Neurocognitivos/metabolismo , Animais , Animais Recém-Nascidos , Suplementos Nutricionais , Feminino , Hipocampo/metabolismo , Ferro/metabolismo , Masculino , Plasticidade Neuronal/fisiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Sprague-Dawley
16.
J Nutr ; 146(3): 484-93, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26865644

RESUMO

BACKGROUND: Early-life iron deficiency is a common nutrient deficiency worldwide. Maternal iron deficiency increases the risk of schizophrenia and autism in the offspring. Postnatal iron deficiency in young children results in cognitive and socioemotional abnormalities in adulthood despite iron treatment. The rat model of diet-induced fetal-neonatal iron deficiency recapitulates the observed neurobehavioral deficits. OBJECTIVES: We sought to establish molecular underpinnings for the persistent psychopathologic effects of early-life iron deficiency by determining whether it permanently reprograms the hippocampal transcriptome. We also assessed the effects of maternal dietary choline supplementation on the offspring's hippocampal transcriptome to identify pathways through which choline mitigates the emergence of long-term cognitive deficits. METHODS: Male rat pups were made iron deficient (ID) by providing pregnant and nursing dams an ID diet (4 g Fe/kg) from gestational day (G) 2 through postnatal day (PND) 7 and an iron-sufficient (IS) diet (200 g Fe/kg) thereafter. Control pups were provided IS diet throughout. Choline (5 g/kg) was given to half the pregnant dams in each group from G11 to G18. PND65 hippocampal transcriptomes were assayed by next generation sequencing (NGS) and analyzed with the use of knowledge-based Ingenuity Pathway Analysis. Real-time polymerase chain reaction was performed to validate a subset of altered genes. RESULTS: Formerly ID rats had altered hippocampal expression of 619 from >10,000 gene loci sequenced by NGS, many of which map onto molecular networks implicated in psychological disorders, including anxiety, autism, and schizophrenia. There were significant interactions between iron status and prenatal choline treatment in influencing gene expression. Choline supplementation reduced the effects of iron deficiency, including those on gene networks associated with autism and schizophrenia. CONCLUSIONS: Fetal-neonatal iron deficiency reprograms molecular networks associated with the pathogenesis of neurologic and psychological disorders in adult rats. The positive response to prenatal choline represents a potential adjunctive therapeutic supplement to the high-risk group.


Assuntos
Colina/farmacologia , Deficiências de Ferro , Efeitos Tardios da Exposição Pré-Natal , Fenômenos Fisiológicos da Nutrição Pré-Natal , Animais , Animais Recém-Nascidos , Comportamento Animal/efeitos dos fármacos , Suplementos Nutricionais , Feminino , Feto/efeitos dos fármacos , Feto/metabolismo , Expressão Gênica , Loci Gênicos , Sequenciamento de Nucleotídeos em Larga Escala , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Gravidez , Cuidado Pré-Natal , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
17.
Am J Physiol Regul Integr Comp Physiol ; 308(4): R276-82, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25519736

RESUMO

Fetal and subsequent early postnatal iron deficiency causes persistent impairments in cognitive and affective behaviors despite prompt postnatal iron repletion. The long-term cognitive impacts are accompanied by persistent downregulation of brain-derived neurotrophic factor (BDNF), a factor critical for hippocampal plasticity across the life span. This study determined whether early-life iron deficiency epigenetically modifies the Bdnf locus and whether dietary choline supplementation during late gestation reverses these modifications. DNA methylation and histone modifications were assessed at the Bdnf-IV promoter in the hippocampus of rats [at postnatal day (PND) 65] that were iron-deficient (ID) during the fetal-neonatal period. Iron deficiency was induced in rat pups by providing pregnant and nursing dams an ID diet (4 mg/kg Fe) from gestational day (G) 2 through PND7, after which iron deficiency was treated with an iron-sufficient (IS) diet (200 mg/kg Fe). This paradigm resulted in about 60% hippocampal iron loss on PND15 with complete recovery by PND65. For choline supplementation, pregnant rat dams were given dietary choline (5 g/kg) from G11 through G18. DNA methylation was determined by quantitative sequencing of bisulfite-treated DNA, revealing a small alteration at the Bdnf-IV promoter. Chromatin immunoprecipitation analysis showed increased HDAC1 binding accompanied by reduced binding of RNA polymerase II and USF1 at the Bdnf-IV promoter in formerly ID rats. These changes were correlated with altered histone methylations. Prenatal choline supplementation reverses these epigenetic modifications. Collectively, the findings identify epigenetic modifications as a potential mechanism to explicate the long-term repression of Bdnf following fetal and early postnatal iron deficiency.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Montagem e Desmontagem da Cromatina , Metilação de DNA , Epigênese Genética , Hipocampo/metabolismo , Deficiências de Ferro , Distúrbios do Metabolismo do Ferro/genética , Efeitos Tardios da Exposição Pré-Natal , Fatores Etários , Animais , Sítios de Ligação , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Colina/administração & dosagem , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Modelos Animais de Doenças , Regulação para Baixo , Epigênese Genética/efeitos dos fármacos , Feminino , Idade Gestacional , Hipocampo/efeitos dos fármacos , Histona Desacetilase 1/metabolismo , Histonas/metabolismo , Ferro/sangue , Distúrbios do Metabolismo do Ferro/sangue , Distúrbios do Metabolismo do Ferro/complicações , Distúrbios do Metabolismo do Ferro/tratamento farmacológico , Metilação , Gravidez , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Ratos Sprague-Dawley , Fatores de Tempo , Fatores Estimuladores Upstream/metabolismo
18.
J Nutr ; 144(11): 1858-65, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25332485

RESUMO

BACKGROUND: Gestational iron deficiency in humans and rodents produces long-term deficits in cognitive and socioemotional function and alters expression of plasticity genes in the hippocampus that persist despite iron treatment. Prenatal choline supplementation improves cognitive function in other rodent models of developmental insults. OBJECTIVE: The objective of this study was to determine whether prenatal choline supplementation prevents the long-term effects of fetal-neonatal iron deficiency on cognitive and social behaviors and hippocampal gene expression. METHODS: Pregnant rat dams were administered an iron-deficient (2-6 g/kg iron) or iron-sufficient (IS) (200 g/kg iron) diet from embryonic day (E) 3 to postnatal day (P) 7 with or without choline supplementation (5 g/kg choline chloride, E11-18). Novel object recognition (NOR) in the test vs. acquisition phase, social approach (SA), and hippocampal mRNA expression were compared at P65 in 4 male adult offspring groups: formerly iron deficient (FID), FID with choline supplementation (FID-C), IS, and IS with choline supplementation. RESULTS: Relative to the intact NOR in IS rats (acquisition: 47.9%, test: 60.2%, P < 0.005), FID adult rats had impaired recognition memory at the 6-h delay (acquisition: 51.4%, test: 55.1%, NS), accompanied by a 15% reduction in hippocampal expression of brain-derived neurotrophic factor (Bdnf) (P < 0.05) and myelin basic protein (Mbp) (P < 0.05). Prenatal choline supplementation in FID rats restored NOR (acquisition: 48.8%, test: 64.4%, P < 0.0005) and increased hippocampal gene expression (FID-C vs. FID group: Bdnf, Mbp, P < 0.01). SA was also reduced in FID rats (P < 0.05 vs. IS rats) but was only marginally improved by prenatal choline supplementation. CONCLUSIONS: Deficits in recognition memory, but not social behavior, resulting from gestational iron deficiency are attenuated by prenatal choline supplementation, potentially through preservation of hippocampal Bdnf and Mbp expression. Prenatal choline supplementation may be a promising adjunct treatment for fetal-neonatal iron deficiency.


Assuntos
Colina/farmacologia , Deficiências de Ferro , Memória/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Colina/administração & dosagem , Suplementos Nutricionais , Feminino , Regulação da Expressão Gênica , Hematócrito , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ferro da Dieta , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos
19.
Physiol Rep ; 1(5): e00096, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24303168

RESUMO

Fetal-neonatal iron deficiency induces adult learning impairments concomitant with changes in expression of key genes underlying hippocampal learning and memory in spite of neonatal iron replenishment. Notably, expression of brain-derived neurotrophic factor (BDNF), a gene critical for neuronal maturation and synaptic plasticity, is lowered both acutely and in adulthood following early-life iron deficiency. Although the mechanism behind its long-term downregulation remains unclear, epigenetic modification in BDNF, as seen in other models of early-life adversity, may play a role. Given that early iron deficiency occurs during critical periods in both hippocampal and gonadal development, we hypothesized that the iron-sufficient offspring (F2 IS) of formerly iron-deficient (F1 FID) rats would show a similar suppression of the BDNF gene as their parents. We compared hippocampal mRNA levels of BDNF and functionally related genes among F1 IS, F1 ID, and F2 IS male rats at postnatal day (P) 15 and P65 using RT-qPCR. As expected, the F1 ID group showed a downregulation of BDNF and associated genes acutely at P15 and chronically at P65. However, the F2 IS group showed an upregulation of these genes at P15, returning to control levels at P65. These results demonstrate that adverse effects of early iron deficiency on hippocampal gene expression observed in the F1 are not present in the F2 generation, suggesting differential effects of nutritionally induced epigenetic programing during the critical periods of hippocampal and gonadal development.

20.
Am J Physiol Regul Integr Comp Physiol ; 305(11): R1297-306, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24089371

RESUMO

Fetal and neonatal iron deficiency results in cognitive impairments in adulthood despite prompt postnatal iron replenishment. To systematically determine whether abnormal expression and localization of proteins that regulate adult synaptic efficacy are involved, we used a quantitative proteomic approach (isobaric tags for relative and absolute quantitation, iTRAQ) and pathway analysis to identify dysregulated proteins in hippocampal synapses of fetal iron deficiency model. Rat pups were made iron deficient (ID) from gestational day 2 through postnatal day (P) 7 by providing pregnant and nursing dams an ID diet (4 ppm Fe) after which they were rescued with an iron-sufficient diet (200 ppm Fe). This paradigm resulted in a 40% loss of brain iron at P15 with complete recovery by P56. Synaptosomes were prepared from hippocampi of the formerly iron-deficient (FID) and always iron-sufficient controls rats at P65 using a sucrose gradient method. Six replicates per group that underwent iTRAQ labeling and LC-MS/MS analysis for protein identification and comparison elucidated 331 differentially expressed proteins. Western analysis was used to confirm findings for selected proteins in the glutamate receptor signaling pathway, which regulates hippocampal synaptic plasticity, a cellular process critical for learning and memory. Bioinformatics were performed using knowledge-based Interactive Pathway Analysis. FID synaptosomes show altered expression of synaptic proteins-mediated cellular signalings, supporting persistent impacts of fetal iron deficiency on synaptic efficacy, which likely cause the cognitive dysfunction and neurobehavioral abnormalities. Importantly, the findings uncover previously unsuspected pathways, including neuronal nitric oxide synthase signaling, identifying additional mechanisms that may contribute to the long-term biobehavioral deficits.


Assuntos
Hipocampo/metabolismo , Deficiências de Ferro , Proteoma/metabolismo , Sinapses/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Feto/metabolismo , Ferro/metabolismo , Aprendizagem/fisiologia , Masculino , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Proteômica/métodos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA